Propriétés microphysiques des nuages par inversion des observations radars ROXI et BASTA

Y. Lemaître, N. Pauwels, C. Le Gac

Introduction

Objectif de la présentation

Décrire les travaux de développement méthodologique en cours sur l'inversion des données de radars Doppler profileur à visée verticale pour documenter les propriétés et processus microphysiques des nuages précipitants

Paramètres microphysique · et applications

Evolution temporelle du profil de

- Réflectivité
- Vitesse Doppler V_d
- Spectre Doppler
- Distribution en taille des hydrométéores liquides ou glacés (PSD/DSD)
- Contenu en eau ou glace
- Vitesse de sédimentation V_{hv}
- Rayon médian, moyen, équivalent, effectif
- Extinction
- Type d'hydrométéore
- Altitude de l'eau surfondue.
- Vitesse verticale de l'air W_{air}
- Processus microphysiques

- Documentation des **processus** dynamiques, de la microphysique et des processus radiatifs liés aux nuages
- Amélioration de la représentation des nuages glacés et des processus associés dans les CRMs exploités pour améliorer les paramétrisations des GCM ou utilisés comme super-paramétrisation dans les GCM.
- Climatologie et variabilités de la couverture nuageuse et des propriétés microphysiques des nuages
- Propriétés statistiques et descente d'échelle
- **Processus d'interaction** entre nuages précipitant et aérosols/gaz réactifs
- Contribution au développement de stations d'observation des nuages dans la perspective de leur assimilation
- Validation des observations spatiales radars et lidars (EarthCARE, GPM).

Principe de la mesure microphysique

Cristaux de glace

- Neige et gouttelettes surfondues
- Gouttelettes surfondues
- Gouttelettes de pluie

Visée verticale \rightarrow V_d=W_{air}+ V_{hydro} + V_{hydro} + \rightarrow

Contraintes:

1. <u>Pointage vertical optimal</u> Dépointage de 1° \rightarrow ~ 18 cms⁻¹ sur V_d pour vent horizontal 10 ms⁻¹

2. <u>Lobe étroit</u>

Largeur du Lobe à 3 dB:

1.86° \rightarrow élargissement du spectre Doppler ~ 3cms⁻¹ (écart type)

3. Spectres Doppler de très bonne qualité

Radar ROXI

Rain Observation with an X-band Instrument

- Radar Doppler <u>9.42 GHz</u> (bande X, λ=3.18 cm) pulsé avec émetteur à état solide (70W)
- Antenne 1.2m de diamètre
- Résolution 100m (0 à 12.8 km)
- Vitesse ambigüe 11.7 ms⁻¹
- Ouverture antenne 1.86°
- Intégrations cohérentes (4096 échantillons)
- Temps d'intégration ~3s
- Acquisition haut débit du signal complexe temporel (12 Mo/s)
- Traitement PPP et FFT temps réel
- Traitement PPP et FFT temps différés (stockage séries temporelles) -> test nouvelles méthodes
- Documentation de la microphysique liquide/glace
- Très faible atténuation selon la verticale
- Peu d'effet de Mie
- Zone d'observation commune avec BASTA (95 GHZ)

Développements actuels: Chirp/FMCW, Monostatique (GT Monostatique)

Radar BASTA

- Radar Doppler BASTA <u>95 GHz</u> (bande W, λ=3.16 mm) FMCW bistatique avec émetteur à état solide (0.5-1W)
- 2 Antennes 60/30 cm de diamètre
- Résolution 12.5-100m (6-12 km-24 km)
- Vitesse ambigüe 5-10 ms⁻¹
- Ouverture antenne 0.4-0.8°
- Temps d'intégration 0.25-10s
- Acquisition haut débit du signal complexe temporel (12 Mo/s)
- Traitement PP temps réel
- Documentation des systèmes nuageux ou faiblement précipitant
- > <u>Atténuation et effet de Mie</u> importants en présence de pluie
- Zone d'observation commune avec ROXI (9.4 GHZ)

Développements actuels: Spectre Doppler, Monostatique

Campagne d'inter-validation instrumentale ATMOS-Precip réalisée par le « GT Précipitation » du SIRTA/IPSL (15 septembre 2016 au 15 Janvier 2017)

Méthodes d'inversion Microphysique

RADON (Delanoë et al, 2005) → Nuages
 Exploite Réflectivités et Vitesses Doppler radar

Limitation: Hypothèse faibles vitesses de l'air

Multi-Fréquence (Matrasov, 1998; Hogan et al, 2005, Tridon et al , 2013) → Nuages
 Exploite Différences de réflectivité et de vitesse Doppler à deux fréquences

Limitation: faibles précipitations

HYSDIVARME-FFT (Lemaître et al., 2018) → Précipitation liquide et glacée
 Exploite Spectres Doppler obtenu par FFT
 Limitation: simple et idéale mais temps de calcul important

VAMOS (Mercier et al., 2016) → Précipitation liquide
 Exploite Spectres Doppler, mesures au sol disdromètre et équation d'évolution temporelle
 de la DSD
 Limitation: précipitations liquides uniquement

HYSDIVARME-PPP* → Précipitation liquide et glacée
 Exploite Réflectivité, Vitesse Doppler, Ecart Type et Coefficients d'asymétrie et d'aplatissement obtenu par Pulse Pair étendu (Moments d'ordre 0, 1 et 2)

Méthode HYSDIVARME-PPP*

(HYdrometeor-Size DIstribution and Vertical Air Retrieval MEthod by « Pulse Pair Processing»)

Méthode HYSDIVARME-PPP*

(HYdrometeor-Size Distribution and Vertical Air Retrieval MEthod by « Pulse Pair Processing»)

Signification Physique

 N_0 et λ mélange des effets de M, Dm, et μ et forte variabilité de la distribution

 N_0^* paramètre d'interception de la distribution exponentielle de même M et Dm et pas de forte variabilité Distribution $F_{\mu}(D_{Dm})$ indépendante de M et Dm μ caractérise uniquement la forme

(1)
$$Z = \int Z(D) dD = \int N(D) D^{6} dD = N_{0}^{\bullet} \cdot \frac{r(4)(4+\mu)^{4}}{4^{4}(4+\mu)} \Gamma(7+\mu) \left(\frac{Dm}{(4+\mu)}\right)^{7}$$

(2) $Vt = \frac{\int Z(D) V(D) dD}{\int Z(D) dD} = C_{p} \cdot \frac{\Gamma(7+\mu+b)}{\Gamma(7+\mu)} \left(\frac{Dm}{(4+\mu)}\right)^{b}$
(3) $\sigma^{2} = \frac{\int Z(D) (V_{r}-V(D))^{2} V(D) dD}{\int Z(D) dD} = C_{p}^{2} \cdot \frac{\Gamma(7+\mu+2b) \Gamma(7+\mu+4x)^{2}}{\Gamma(7+\mu)^{2}} \left(\frac{Dm}{(4+\mu)}\right)^{2\alpha}$
(4) Skewness $= \frac{\int Z(D) (V_{r}-V(D))^{3}}{\int Z(D) dD} = C_{p}^{3} \cdot \left[\frac{\Gamma(7+\mu+3b)}{\Gamma(7+\mu)} - 3\frac{\Gamma(7+\mu+b)}{\Gamma(7+\mu)^{2}} - 3\frac{\Gamma(7+\mu+b)^{4}}{\Gamma(7+\mu)^{2}} + 2\frac{\Gamma(7+\mu+b)^{4}}{\Gamma(7+\mu)^{3}}\right] \left(\frac{Dm}{(4+\mu)}\right)^{3\alpha}$
(5)
Kurtosis $= \frac{\int Z(D) (V_{r}-V(D))^{4} dD}{\int Z(D) dD} = C_{p}^{4} \cdot \left[\frac{\Gamma(7+\mu+4b)}{\Gamma(7+\mu)} - 4\frac{\Gamma(7+\mu+b)}{\Gamma(7+\mu)^{2}} + 6\frac{\Gamma(7+\mu)\Gamma(7+\mu+2b)}{\Gamma(7+\mu)^{2}} - 3\frac{\Gamma(7+\mu+b)^{4}}{\Gamma(7+\mu)^{4}}\right] \left(\frac{Dm}{(2+\mu)}\right)^{4\alpha}$
(6) $W = V_{d} - V_{t}$
(7) $M = \frac{\pi \rho_{w} N_{0}^{*} Dm^{4}}{4^{4}}$
 $\lambda = \frac{4 + \mu}{Dm}$
Skewness
 $= f(\mu, b)$
(3) $+ (\mu, b, C) + \sigma \Rightarrow Dm$
(2) $+ (\mu, b, C) + \sigma \Rightarrow Dm$
(2) $+ (\mu, b, C) + \sigma \Rightarrow Dm$
(2) $+ (\mu, b, C) + \sigma \Rightarrow Dm$
(3) $+ (\mu + Dm + Z \Rightarrow N_{0}^{*}$

 $(7) + N_0 * + Dm \rightarrow M$

	Obtention de C_p de la relation $V(D) = C_p D^b$ à partir de b												
(Khvorostyanov and Curry, 2001)													
Force de trainée= force de gravité \Rightarrow $V(D) = C_p \cdot D^b$ avec $m = \alpha D^\beta$ $S = \gamma D^\sigma$ V Viscosité cinématique (T,P) $C_p = A_{Re} \cdot v^{1-2BRe} \left(\frac{2\alpha g}{\rho_a \gamma}\right)^{B_{Re}}$ $A_{Re} = D^{Re}$ $\alpha = B_{Re}(\beta - \sigma + 2) - 1$ $B_{Re} = D^{Re}$ $X = \frac{2mgD}{S\rho_a}$													
=		Size (.m)	Mass	(g)		6 - - 5 -	(a)	cm				
Т	Гуре	From	То	α	β		^a) ⁰						
Plate Den Agg Grau Hail	es idrites iregates upel	0.0015 0.03 0.05 0.2 0.5	0.3 0.4 0.8 0.8 2.5	0.00739 0.003 0.003 0.049 0.466	2.45 2.3 2.1 3.06 3		d \mathcal{J}^{0} 3						
							2 + 0	1 2 3	4 5				
=	Size (cm)		Area	(cm ²)		2.0							
	Туре	From	То	γ	σ			(b)					
Pla Pla De Ag Gr	ites ites indrites gregates aupel	0.0015 0.01 0.03 0.05 0.2	0.01 0.3 0.4 0.8 0.8	0.24 0.65 0.21 0.2285 0.5	1.85 2 1.76 1.88 2		1.5 – 9 – 1.0 –						
Ha	ui	0.5	2.5	0.625	2								

0.5 —

0

.

5

1 2 3 4 Decimal logarithm of droplet diameter D (μm)

(Spek et al., 2008)

	Mass		Area		
Particle type	α	β	γ	σ	Remark
Speherical drops	$(\pi/6)\rho_{\rm w} = 0.524$	3	$\pi/4 = 0.785$	2	
Nonspherical drops	$(\pi/6)\rho_w \times \zeta(D)$	3	$\pi/4 = 0.785$	2	
Hexagonal plates (Pla)					
$15 \ \mu m < D < 100 \ \mu m$	0.00739	2.45	0.24	2.00	$\alpha = 0.0376, \beta = 3.31,$
$100 \ \mu m < D < 3000 \ \mu m$	0.00739	2.45	0.65	1.85	$A_v = 297, B_v = 0.86$ (HK87)
Hexagonal Columns					
$30 \ \mu m < D < 100 \ \mu m$	0.1677	2.91	0.684	2.00	
$100 \ \mu m < D < 300 \ \mu m$	0.00166	1.91	0.0696	1.50	
$D > 300 \ \mu m$	0.000907	1.74	0.0512	1.414	
Rimed long columns					
$200 \ \mu \text{m} \leq 2400 \ \mu \text{m}$	0.00145 (old) 0.00125 (new)	1.8	0.0512	1.414	
Crystal with sector-like brances (P1b)					
$10 \ \mu m < D < 40 \ \mu m$	0.00614	2.42	0.24	1.85	
40 $\mu m < D < 2000 \ \mu m$	0.00142	2.02	0.55	1.97	
Broad-branched crystal (P1c)					
$10 \ \mu m < D < 100 \ \mu m$	0.00583	2.42	0.24	1.85	
$100 \ \mu m < D < 1000 \ \mu m$	0.000516	2.02	0.21	1.76	
Stellar crystal with broad arms (P1d)					
$10 \ \mu m < D < 90 \ \mu m$	0.00583	2.42	0.24	1.85	
90 $\mu m < D < 1500 \ \mu m$	0.00027	1.67	0.11	1.63	
Densely rimed dendrites (R2b)					
$1800 \ \mu m < D < 4000 \ \mu m$	0.030 (old)	2.3	0.21	1.76	$A_{\mu} = 62, B_{\mu} = 0.33$
	0.015 (new)				(LH74)
Bullet rosettes, five branches					
200 $\mu m < D < 1000 \ \mu m$	0.00308	2.26	0.0869	1.57	$A_{\nu} = 2150, B_{\nu} = 1.225$ (D < 0.06 cm) $A_{\nu} = 492, B_{\nu} = 0.7$ (D > 0.06 cm) (Heyms- field and Iaquinta 2000)

TABLE 1. Coefficients of mass and area power laws for drops and crystals used in calculations of a_v , b_v . Those for crystals are from Mitchell (1996) with some data from Locatelli and Hobbs (1974), Heymsfield and Kajikawa (1987), and Heymsfield and Iaquinta (2000).

(Khvorostyanov and Curry, 2001)

Exemples d'observations

Intercomparaison avec HYSDIVARM-FFT*

16 Septembre 2016 17h25

FFT

26.1

1.77

0.175

32

0.020

1.57

0.20

1.36

0.05

Neige (Flocon)

SNR (dB)

Paramètre

Z (dBZ)

 V_{d} (ms⁻¹)

σ (ms⁻¹)

λ (cm⁻¹)

 N_0 (cm⁻⁴)

 V_{t} (ms⁻¹)

W (ms⁻¹)

Dm (mm)

M (g Kg⁻¹)

 $F(\alpha)$ =Skew/ σ^3

Type

15.6

Intercomparaison avec HYSDIVARM-FFT*

Profil vertical de la réflectivité (Z), de la vitesse verticale (W), de la vitesse de sédimentation (Vt) et du type d'hydrométéore (LOI) à 17.42 TU

l'évolution temporelle de la réflectivité et du taux précipitant à 300m. Comparaison ROXI – Disdromètre

Identification des processus microphysiques

Règles d'identification de processus microphysiques

Selon une altitude décroissante (en suivant l'hydrométéore dans sa chute):

- Nombre de petites particules \nearrow si N₀ \nearrow λ \nearrow Dm \searrow
- Nombre de grosses particules \nearrow si $\lambda \supseteq Dm \nearrow$

- Evaporation si Dm 7 M b et Z ~constant
- Coalescence/Agrégation si Dm 7 M constant et Z 7
- Breakup si Dm 🛛 M constant et Z 🖄

 $M = \frac{\pi \rho}{6} \int N(D) \cdot D^3 \cdot dD$ $Z = \int N(D) \cdot \sigma(D) \cdot dD$ $N_t = \int N(D) \cdot dD$

 $N(D) = N_0 \cdot D^{\mu} \cdot e^{-\lambda} \cdot D$

 $\mathbf{D}_{m} = \frac{\int N(D) D^{4} dD}{\int N(D) D^{3} dD}$

Exemple d'application au cas du 16 septembre 2016

Entre 5 km et 3.5 km:

 $N_0 \supseteq \lambda \supseteq \rightarrow$ grosses particules \nearrow et Dm \nearrow M constant Z $\nearrow \rightarrow$ Agrégation Entre 1km et 300m:

 $N_0 \nearrow \lambda \nearrow \rightarrow$ petites particules \nearrow et Dm \searrow M \nearrow Z $\nearrow \rightarrow$ Breakup/Collision Au-dessous bande brillante (2.5km-1km):

 $N_0 \nearrow \lambda \nearrow \rightarrow$ petites particules \nearrow et $Dm \searrow M \supseteq Z \supseteq \rightarrow$ Fonte/Evaporation

Perspectives

- Intercomparaison systématique des méthodes multifréquences avec les méthodes HYSDIVARME sur les données de la campagne ATMOS-Precip (15 septembre 2016 au 15 Janvier 2017)
- Validation par les mesures in situ de l'expérience EXAEDRE (Aoûtoctobre 2018)

RADON

Pour BASTA où seuls Z et Vd disponibles

- Obtention de la relation Vt=f(Z) à partir de Vd=(Vt+W)=f(Z) → Approche statistique où W supposé nul en moyenne sur un certain laps de temps
- Etablissement de relations théoriques Vt-Z pour différents types de particules c.a.d relations densité-diamètre $\rho=aD^b$ et surface projetée-Diamètre $A = \gamma D^s$

$$Z_e = \frac{\lambda^4}{|K_w|^2 \pi^5} 10^{18} \int N(D) \,\sigma_{\rm bsc}(\rho, D, \lambda) \, dD \; (\rm mm^6 \; m^{-3}),$$

S_{bsc} Coefficient de rétro-diffusion de Mie

$$v(D) = \frac{a_d(D)\nu}{D} \left(\frac{2gD^2}{\rho_a \nu^2}\right)^{b_d(D)} \left[\frac{m(D)}{A(D)}\right]^{b_d(D)} (\text{cm s}^{-1})$$

→ Meilleur ajustement donne type d'hydrométéore et densité

$$V_t = f(D_m) = gD_m^l, \qquad \qquad N_0^* = \frac{|K_w|^2 \pi^5 10^{-18}}{\lambda^4} Z_e I(D_m)^{-1} (m^{-4}).$$

$$I(D_m) = \int F(D/D_m) \sigma_{\rm bsc} \, dD$$

METHODE MULTI-FREQUENCE

$$DWR(r) = Z_{\lambda 1}(r) - Z_{\lambda 2}(r) \neq 0 \text{ avec } (\lambda_1 > \lambda_2)$$

Dual-Wavelength Ratio (dBZ)

avec Z(D) = 10. $Log_{10} (\int N(D) \cdot \sigma(D) \cdot dD) mm^6 m^{-3}$ Réflectivité radar (dBZ)

<u>Hogan et al. (2005)</u>: Atténuation → DWR(r)≠0 et M=A .(DWR(r_2)-DWR(r_1)) Contenu en eau/glace (g/kg) (10 dBZ <-> 1 mm)

<u>Matrasov (1998)</u>: Effets de Mie-→DWR(r)≠0 et DWR(r)=58. D_m^{1.66} Diamètre Médian (cm) (20 dBZ <-> 0.8 cm)

Méthode Multifréquence: Prétraitement

Atténuation par la pellicule d'eau sur radôme BASTA

Différenciation périodes

- 1. Atténuation par la pluie (BASTA)
- 2. Effets de Mie (BASTA)

Prétraitement exploitant les réflectivité et vitesse Doppler des deux radars

Exploite l'impact différencié de ces effets

- 1. proche des radars les effets d'atténuation par la pluie sont faibles
- 2. atténuation par le radome affecte de la même façon l'ensemble d'un tir radar
- 3. erreur d'étalonnage affecte de la même façon l'ensemble des tirs radar
- 4. Effets de Mie affecte la vitesse Doppler

Séparation Atténuation/Effet de Mie

HYSDIVARME-FFT

(HYdrometeor-Size DIstribution and Vertical Air Retrieval MEthod by « Fast Fourier Transform »)

Méthode VAMOS

Méthode 4D Var:

- Disdromètre N(D, Alt=0, t) v_t (D, altitude=0, t)
- Radar Spectre Doppler $Z(v_t + w, alt, t) = N(D, Alt, t). \sigma(D). (\frac{dD}{dv_t})$

- Equation d'évolution

Méthode HYSDIVARME

(HYdrometeor-Size DIstribution and Vertical Air Retrieval MEthod)

Evolution temporelle de la microphysique

Evolution temporelle de la microphysique

Obtention N(D)

Direct problem : from DSD to spectrum

Theoretical simple case

$$\eta_{theory}(v) = N(D)\sigma(D)\frac{\partial D}{\partial v}$$

- η_{theory} : hydrological spectrum
- N(D): DSD $(m^{-3}mm^{-1})$
- $\sigma(D)$: backscattering cross-section (Mie theory)
- v(D): velocity / diameter relationship

A not so simple real case

$$\eta(v+w) = \left[\eta_{theory}(v)e^{-Att(z)}\right] * \eta_{air}(v) + \eta_{noise}$$

- η : actual (measurement-like) spectrum
- Att : path-integrated attenuation
- w : vertical air motion

$$\eta_{air}(v)$$
 : turbulence effect

 $\eta_{noise}(v)$: noise effect

