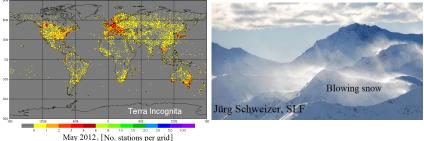


Ground-based radar remote sensing of Antarctic precipitation

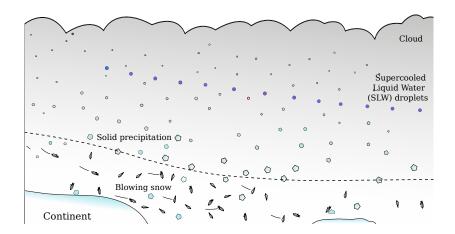
C. Durán-Alarcón¹, B. Boudevillain¹ and A. Berne², APRES3 team.

 1 Institut des Géosciences de l'Environnement, Université Grenoble Alpes, France 2 Lab. de Télédétection Environnementale, École Polytechnique Fédérale de Lausanne, Switzerland

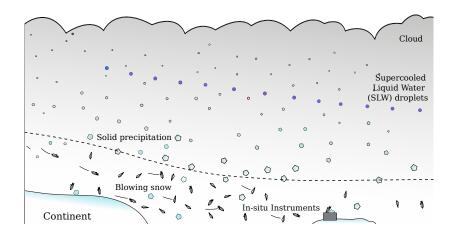
Radars: Technologies, Méthodologies et Applications, Toulouse, 19 - 20 Nov. 2019

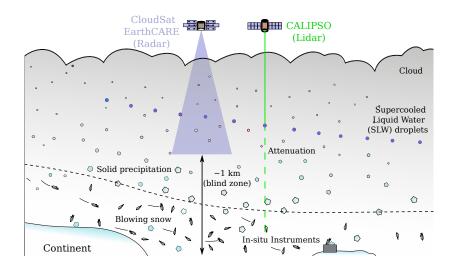


Introduction)

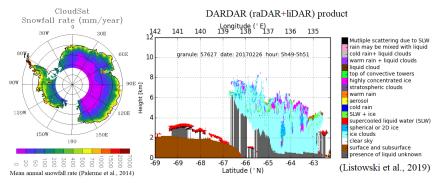

Motivation

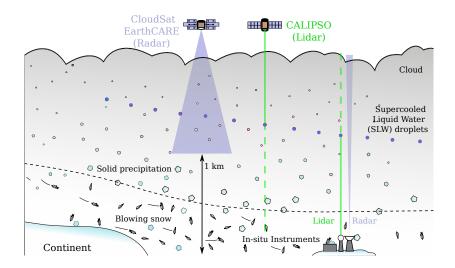
- Future evolution of precipitation remains uncertain in a changing climate
- There is a large uncertainty in models to represent current state of precipitation, specially in its solid form due to:
 - Lack in observations in remote areas: high-latitude and altitude regions.
 - Uncertainties in measurements (e.g. under catch in gauges due to wind).
- $\bullet\,$ Antarctic snowfall \rightarrow impact at global scale (e.g. sea level rise).
- Alpine snowfall \rightarrow impact on human development (e.g. water resources).




Antarctic context

Antarctic context


Antarctic context


Remote sensing from space

Observations from space

- Allow the study of spatial and vertical **structure of precipitation** and **mixed-phase clouds**
- Limitations: Lack of observations for validation, low temporal resolution, limited observations near the surface

Remote sensing from surface

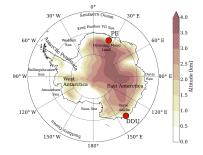
Research objective

Objective: Vertical structure of precipitation

To characterize the vertical structure of the precipitation in two contrasted but important regions of the cryosphere, Antarctica and the Alps, in the low troposphere using ground-based radars.

- Instruments and Datasets
- Vertical structure of precipitation using radars
- General conclusions and perspectives

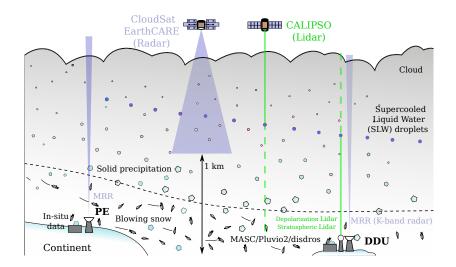
• Instruments and Datasets


- Vertical structure of precipitation using radars
- General conclusions and perspectives

Antarctica stations

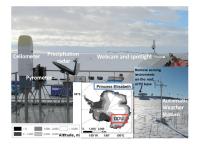
 <u>Dumont d'Urville</u> (DDU): Antarctic coast, strong katabatic winds.

Plan


 <u>Princess Elisabeth</u> (PE): Inland (173 km and 1392 m a.s.l), colder and dryer, less strong katabatic winds.

Strategy of observation in Antarctica

Ground-based radar remote sensing of Antarctic precipitation


12 / 32

Strategy of observation in Antarctica

- Remote sensing: MRR, depolarization lidar (at DDU), Radio Sounding.
- In-situ sensors: Snow gauge, disdrometers, temperature, relative humidity, particle cameras.

Radar reflectivity Z_e , vertical vel. W and spectral width σ collected since Nov 2015.

Same data collected since 2010, mostly in summer and autumn.

Ground-based radar remote sensing of Antarctic precipitation

Dumont d'Urville station (41 m a.s.l.) Princess Elisabeth station (1392 m a.s.l.)

Plan

• Instruments and Datasets

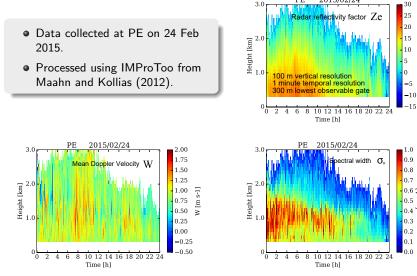
• Vertical structure of precipitation using radars

• General conclusions and perspectives

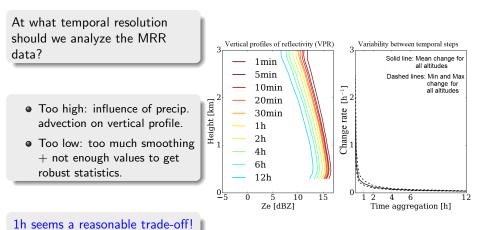
The vertical structure of precipitation in East Antarctica and the Alps derived from micro rain radars

Motivation

 Evolution of the vertical profile of precipitation is fundamental to understand surface precipitation, and evaluate satellite and numerical products.


PE

2015/02/24


Ze [dBZe]

Ξ

Example of MRR data

Temporal integration

Ground-based radar remote sensing of Antarctic precipitation

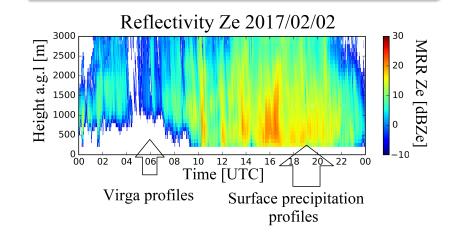

17 / 32

Ze

W

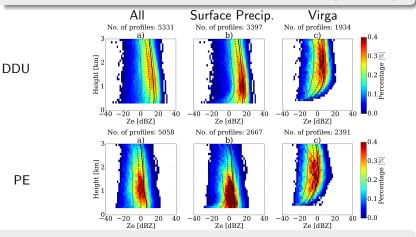
 σ_{v}

Case of Antarctica: DDU and PE, East Antarctica

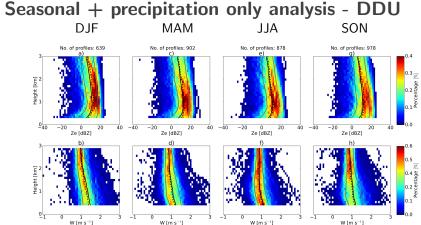


Solid lines: Mean profiles Dashed lines: Median profiles Grey lines : 20 and 80% quantiles.

- Z_e at DDU > PE. Diff. type, size and density of particles, intensity, etc.
- Vertical velocity in lowest 1 km at DDU > PE. Changes in density and shape of particles.
- Spectral width (turbulence, diff. crystal types) in lowest 1 km DDU > PE.


Surface precipitation and virga events

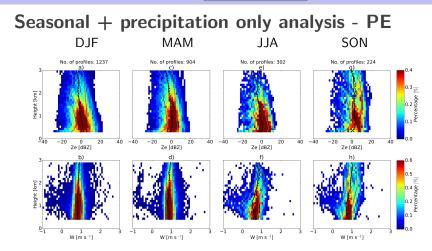
Virga correspond to profiles with no signal at lowest level (300 m agl).



Surface precipitation and virga events

Virga correspond to profiles with no signal at lowest level (300 m agl).

- Virga are frequent (36% at DDU, 47% at PE) + diff. vertical structure.
- \rightarrow Precip and virga should be analyzed separately.



- Z_e: similar general shape for all seasons with larger vertical extent in summer + low-level sublimation due to katabatic winds.
- W: differences due to microphysics (aggregation/riming)?
- σ : no seasonal influence (not shown).

Ground-based radar remote sensing of Antarctic precipitation

Ze

22 / 32

- Z_e : similar behavior to DDU, with lower vertical extent.
- W: no lower level increase in $V \rightarrow \text{diff.}$ microphysics than at DDU?
- Possible sampling effects because of limited data in winter and spring.

Ground-based radar remote sensing of Antarctic precipitation

Ze

- Instruments and Datasets
- Classification of cloud and precipitation using lidar (Objective 1)
- Vertical structure of precipitation using radars (Objective 2)
- General conclusions and perspectives

Conclusions and perspectives

Conclusions

- Clouds and precipitation were studied using lidar combined with MRR, to detect and classify the particles.
- Differences of **Doppler moments are consistent with local climatology**: relative warmer and moister at DDU so profiles corresponding to deeper and more intense precipitation.
- Possible influence of different dominant microphysical processes.
- Frequent occurrence of virga in Antarctica (36 (DDU) and 47% (PE) of all profiles).
- These studies provide information to improve the interpretation of the numerical models and to validate satellite data

Conclusions and perspectives

Perspectives

- Expand the analysis to other stations with MRR and/or lidar data.
- Information from MRR will be useful to validate and calibrate new satellite mission as the case of EarthCARE.

Merci beaucoup pour votre attention !

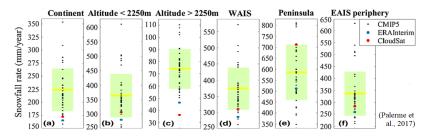
© Alexandre Flouttard

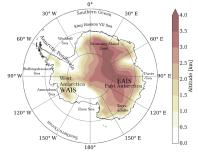
26 / 32

Ground-based radar remote sensing of Antarctic precipitation

C. Durán-Alarcón¹, B. Boudevillain¹ and A. Berne², APRES3 team.

 1 Institut des Géosciences de l'Environnement, Université Grenoble Alpes, France 2 Lab. de Télédétection Environnementale, École Polytechnique Fédérale de Lausanne, Switzerland

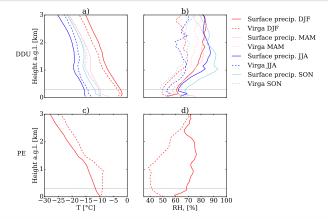

Radars: Technologies, Méthodologies et Applications, Toulouse, 19 - 20 Nov. 2019



Antarctic context

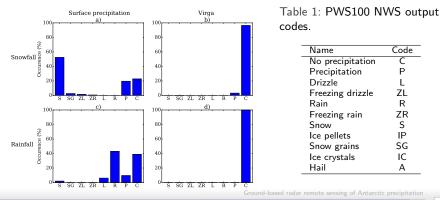
Precipitation uncertainty

- Large discrepancy between models.
- Similar results CloudSat and ERA-interim. Problems with orographic precipitation for coarse resolution.

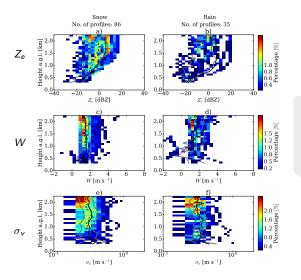


Introduction	Plan	Instruments and datasets	Vertical structure of precipitation	Conclusions and perspectives
	1 pm	1 nm	1 µm 1 mm 1 cm	1 m 100 m
	λ (m) 10^{-13} 10^{-12}	$10^{\cdot 11} \ 10^{\cdot 10} \ 10^{\cdot 9} \ 10^{\cdot 8} \ 10^{\cdot 7}$	$10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1}$	$1 10^1 10^2$
	ν (Hz) 10 ²¹ 10 ²⁰	10^{19} 10^{18} 10^{17} 10^{16} 10^{15}	10^{14} 10^{13} 10^{12} 10^{11} 10^{10} 10^{9}	$10^8 10^7 10^6$
	Gamma Ray	X-Ray UV	Infrared Microwave	Radio
		Visibl	e light	
		\	/ \	/
		Li	dar Ra	dar
	Radar b	ands Frequency	Uses	
	S	2–4 GHz	Long range weather obser	rvations
	С	4–8 GHz	Weather observation	าร
	Х	8–12 GHz	Weather observation	าร
	К	18–27 GHz	Rain and snowfall	
	W	75–110 GHz	Cloud and precipitati	ion

Virga events and radio soundings


Verifying virga events using radio soundings

- Co-located RS and precipitation events. Only summer RS at PE).
- Low relative humidity (RH_i) with respect to the ice during virga events.



Snow/rainfall classification vs. disdrometer outputs

- Snow/rainfall Classification was evaluated with an independent classification derived from disdrometer data
- Comparison shows agreement between both classifications

Vertical distributions for virga events

- Significant decrease of Z_e toward the surface (both)
- narrowed values of W
- lower values of σ_v