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Motivation
Future evolution of precipitation remains uncertain in a changing climate

There is a large uncertainty in models to represent current state of
precipitation, specially in its solid form due to:

Lack in observations in remote areas: high-latitude and altitude regions.
Uncertainties in measurements (e.g. under catch in gauges due to wind).

Antarctic snowfall → impact at global scale (e.g. sea level rise).

Alpine snowfall → impact on human development (e.g. water resources).
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Remote sensing from space

Observations from space

Allow the study of spatial and vertical structure of precipitation and
mixed-phase clouds

Limitations: Lack of observations for validation, low temporal resolution,
limited observations near the surface
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Remote sensing from surface
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Research objective

Objective: Vertical structure of precipitation

To characterize the vertical structure of the precipitation in two
contrasted but important regions of the cryosphere, Antarctica and the
Alps, in the low troposphere using ground-based radars.
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Antarctica stations

Dumont d’Urville (DDU):
Antarctic coast, strong
katabatic winds.

Princess Elisabeth (PE): Inland
(173 km and 1392 m a.s.l),
colder and dryer, less strong
katabatic winds.
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Strategy of observation in Antarctica
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Strategy of observation in Antarctica

Remote sensing: MRR, depolarization lidar (at DDU), Radio Sounding.

In-situ sensors: Snow gauge, disdrometers, temperature, relative humidity,
particle cameras.

Dumont d’Urville station (41 m a.s.l.)

Radar reflectivity Ze , vertical vel. W and
spectral width σ collected since Nov 2015.

Princess Elisabeth station (1392 m a.s.l.)

Same data collected since 2010, mostly in
summer and autumn.
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The vertical structure of precipitation in East
Antarctica and the Alps derived from micro

rain radars

Motivation

Evolution of the vertical profile of precipitation is fundamental to
understand surface precipitation, and evaluate satellite and numerical
products.
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Example of MRR data

Data collected at PE on 24 Feb
2015.

Processed using IMProToo from
Maahn and Kollias (2012).

Radar reflectivity factor

100 m vertical resolution
1 minute temporal resolution
300 m lowest observable gate

Mean Doppler Velocity vSpectral width          
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Temporal integration

At what temporal resolution
should we analyze the MRR
data?

Too high: influence of precip.
advection on vertical profile.

Too low: too much smoothing
+ not enough values to get
robust statistics.

1h seems a reasonable trade-off!
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Case of Antarctica: DDU and PE, East
Antarctica
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Solid lines: Mean profiles
Dashed lines: Median profiles
Grey lines : 20 and 80%
quantiles.

Ze at DDU > PE. Diff.
type, size and density of
particles, intensity, etc.

Vertical velocity in lowest
1 km at DDU > PE.
Changes in density and
shape of particles.

Spectral width
(turbulence, diff. crystal
types) in lowest 1 km
DDU > PE.
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Surface precipitation and virga events

Virga correspond to profiles with no signal at lowest level (300 m agl).
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Surface precipitation and virga events
Virga correspond to profiles with no signal at lowest level (300 m agl).

DDU

All Surface Precip. Virga

PE

Virga are frequent (36% at DDU, 47% at PE) + diff. vertical structure.

→ Precip and virga should be analyzed separately.
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Seasonal + precipitation only analysis - DDU

Ze

W

DJF MAM JJA SON

Ze : similar general shape for all seasons with larger vertical extent in
summer + low-level sublimation due to katabatic winds.

W : differences due to microphysics (aggregation/riming)?

σ: no seasonal influence (not shown).
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Seasonal + precipitation only analysis - PE

Ze

W

DJF MAM JJA SON

Ze : similar behavior to DDU, with lower vertical extent.

W : no lower level increase in V → diff. microphysics than at DDU?

Possible sampling effects because of limited data in winter and spring.
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Plan

Instruments and Datasets

Classification of cloud and precipitation using lidar (Objective 1)

Vertical structure of precipitation using radars (Objective 2)

General conclusions and perspectives
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Conclusions and perspectives

Conclusions

Clouds and precipitation were studied using lidar combined with MRR, to
detect and classify the particles.

Differences of Doppler moments are consistent with local climatology:
relative warmer and moister at DDU so profiles corresponding to deeper
and more intense precipitation.

Possible influence of different dominant microphysical processes.

Frequent occurrence of virga in Antarctica (36 (DDU) and 47% (PE)
of all profiles).

These studies provide information to improve the interpretation of the
numerical models and to validate satellite data
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Conclusions and perspectives

Perspectives

Expand the analysis to other stations with MRR and/or lidar data.

Information from MRR will be useful to validate and calibrate new
satellite mission as the case of EarthCARE.
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Merci beaucoup pour votre attention !
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1 Institut des Géosciences de l’Environnement, Université Grenoble Alpes, France
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Antarctic context

Precipitation uncertainty

Large discrepancy between
models.

Similar results CloudSat and
ERA-interim. Problems with
orographic precipitation for
coarse resolution.
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ν (Hz)

 Gamma Ray           X-Ray          UV                     Infrared             Microwave           Radio     

Visible light

   Lidar                                 Radar

 1 pm                     1 nm                      1 µm                      1 mm   1 cm            1 m           100 m 

Radar bands Frequency Uses
S 2–4 GHz Long range weather observations
C 4–8 GHz Weather observations
X 8–12 GHz Weather observations
K 18–27 GHz Rain and snowfall
W 75–110 GHz Cloud and precipitation
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Virga events and radio soundings

Verifying virga events using radio soundings

Co-located RS and precipitation events. Only summer RS at PE).

Low relative humidity (RHi ) with respect to the ice during virga events.
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Snow/rainfall classification vs. disdrometer
outputs

Snow/rainfall Classification was evaluated with an independent
classification derived from disdrometer data

Comparison shows agreement between both classifications
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Table 1: PWS100 NWS output
codes.

Name Code
No precipitation C
Precipitation P
Drizzle L
Freezing drizzle ZL
Rain R
Freezing rain ZR
Snow S
Ice pellets IP
Snow grains SG
Ice crystals IC
Hail A
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Vertical distributions for virga events
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Significant decrease of Ze

toward the surface (both)

narrowed values of W

lower values of σv
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