

Evaluation of a 95 GHz Radar Simulator at SIRTA Observatory for the retrieval of fog Microphysical Properties by cloud radar and microwave radiometer synergy

Alistair Bell

P. Martinet, O.Caumont, B.Vié, J. Delanöe, J-C Dupont, M. Borderies

Context

- Incorrect fog forecasting has a large economic cost
- Observation gaps within the boundary layer
- Development of affordable groundbased remote sensing instruments
- Aim : Improvement of forecast through assimilation of cloud radar/microwave radiometer data

Phd Thesis : Improvements in Fog Forecasting through the instrumental synergy of Cloud Radars and Microwave Radiometers

Instrumentation

BASTA cloud radar

- Bistatic Radar Systems for Atmospheric Studies
- Retrieves Radar Reflectivity and Doppler Velocity
- 95 GHz transmission frequency
- Continuous transmission
- Frequency modulation allows for locating the target
- Lower cost than traditional weather radar
- Minimum measurement distance ~40m
- Scanning possible
- Four operational modes:
 - Resolution 12.5-200m
 - Range 12km- 24km

Sirta Observatory

- Dataset compiled from range of instruments at Sirta lab, Palaiseau :
- Cloud Radar (reflectivity)
- Radiometer (Liquid Water Path)
- Ceilometers (Cloud base height)
- Visibility monitors
- Anemometer (Wind speed, Direction)
- Precipitation Sensor
- LW/SW radiation sensors
- Soil sensors (heat flux, moisture, temperature)

The fog 2018-2019 dataset at SIRTA

*Tardif, Robert & Rasmussen, Roy. (2007). Event-Based Climatology and Typology of Fog in the New York City Region. Journal of Applied Meteorology and Climatology. 46. 1141-1168. 10.1175/JAM2516.1.

Overview of AROME Fog Forecast Errors

- Comparison performed on fog cases between model and Observations
- Fog top found from any reflectivity sensed
- Generally good capability of AROME to forecast fog

The Forward Operator / Radar Simulator

Radar Reflectivity at Sirta on 23/11/2018 - 24/11/2018

METEO FRANCE

Radar Simulator was

ground based radar

Forecasts from high-

AROME was used to

initialise simulator

resolution NWP model

designed by Borderies et al.

2018* which was adapted for

*M. Borderies, O. Caumont, C. Augros, J. Delanoë, V. Ducrocq (2018). Simulation of W-band radar reflectivity for model validation and data assimilation

Investigating Fog Spatial Variability (1)

Simulated Radar Reflectivity at 49m agl on 04/11/2018 20km x 20km Domain Extracted from AROME model

- Reflectivity appears to be similar for areas with similar surface heights
- In mature phase, reflectivity is more uniform than during formation/dissipation phase
- Reflectivity differences up to ~ 10 / 20 dBz

Û

METEO

FRANCE

Optimal Profile Method

- Aim: Find best atmospheric profile for radar observation
- Simulate Reflectivity for all profiles in domain
- Score each profile according to weighted RMSE of all potential profiles found
- Weighting puts more importance on cells at lower altitudes
- Profile with lowest score chosen
- $h_{max} = 5km$

weighted RMSE =
$$\sqrt{\frac{\sum_{i=0}^{i=level_{max}} \left[w_i \cdot \left(Z_{(Observation,i)} - Z_{(Simulation,i)}\right)\right]^2}{n}}$$

Optimal Profile Selection: a stratus lowering case study

Radar Reflectivity at Sirta on 23/11/2018 - 24/11/2018

Impact of optimal profile selection: 2D histogram of observation minus simulated reflectivity

Radar Reflectivity Differences (dB)

- Plots show distribution of all simulated profiles across domain for a single time
- At each stage, a simulation closer to the observation can be found in the domain

Improvement In Simulated Reflectivity Through Optimal Selection Method : Statistical study

Optimal profile method :

- Improvement in profile selection by use of optimal profile method
- By Selecting the time to choose and then the spatial profile improvements are made
- Best results by applying the method to all profiles and then selecting

Conclusions

- AROME model can generally forecast the presence of a fog event, but there are significant errors in the fog top height, and the formation and dissipation times
- The spatial variability of simulated reflectivity about a 20 x 20km domain is significant and is related to topography
- Large improvement of observation minus simulated reflectivity through an optimal selection of the background profile
- Optimal profile will be used to initialize 1DVAR retrievals of T,Q and LWC from cloud radar and microwave radiometer synergy.

Next Steps: SOFOG3D field campaign

- → South-West France Winter 2019/20
- In-situ and remote instruments
- → AROME run with 500m resolution
- Supersite instrumental base

Super

Site

44.5°1

44.3°1

44.2° 44.1

> Tower for cloud microphysical measurements, humidity sensors, visibility monitors...

Radiometer

BASTA locations

Locations

Radiometer

UAV

cloud radar

Ceilometer

Tethered balloon with Cloud Droplet Sensor

Thank you for your attention!

Radar Reflectivity from BASTA on 29/10/2019 at SOFOG3D field campaign

Constraining by LWP ?

5-10 dB less reflectivity in simulation, even though LWP higher in AROME

